DSpace
Portal do Conhecimento
  Português | Inglês

Portal do Conhecimento >
BDCV - Biblioteca Digital de Cabo Verde >
BDCV - Teses e Dissertações com Equivalências >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10961/3385

Title: Making Predictions with Textual Contents
Authors: Brito, Indira
Keywords: Previsões com Base em Texto
Modelos de Regressão
Agrupamento Automático de Palavras Semelhantes
Engenharia de Caracteristicas para Aplicações em PLN
Issue date: Apr-2014
Abstract: Forecasting real-world quantities with basis on information from textual descriptions has recently attracted significant interest as a research problem, although previous studies have focused on applications involving only the English language. This document presents an experimental study on the subject of making predictions with textual contents written in Portuguese, using documents from three distinct domains. I specifically report on experiments using different types of regression models, using state-of-the-art feature weighting schemes, and using features derived from cluster-based word representations. Through controlled experiments, I have shown that prediction models using the textual information achieve better results than simple baselines such as taking the average value over the training data, and that richer document representations (i.e., using Brown clusters and the Delta- TF-IDF feature weighting scheme) result in slight performance improvements.
URI: http://hdl.handle.net/10961/3385
Appears in Collections:BDCV - Teses e Dissertações com Equivalências

Files in This Item:

File Description SizeFormat
thesis.pdf1,43 MBAdobe PDFView/Open
Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

NOSI Universidade do Minho  

Portal do Conhecimento  - Feedback - portaldoconhecimento@mesci.gov.cv - Tel. +238 - 2610232

Facebook