DSpace
Portal do Conhecimento
  Português | Inglês

Portal do Conhecimento >
BDCV - Biblioteca Digital de Cabo Verde >
BDCV - Documentos sobre Cabo Verde >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10961/5331

Title: Seasonal autoregressive integrated moving average time series model for tourism demand: the case of Sal Island, Cape Verde
Authors: Neves, Gilberto A.
Nunes, Catarina S.
Fernandes, Paula Odete
Keywords: Time series
SARIMA models
Number of overnight stays
Sal Island
Cape Verde
Issue date: May-2022
Publisher: Springer Nature
Abstract: This article appears as an essential contribution for decision-makers in the Cape Verdean tourism sector given the impact that the number of overnight stays has on the economy of the country and the Sal Island, which until 2018 had been increasing every year. Since seasonality is a strong feature of the island's tourism, decision-makers are interested in knowing the seasonal variation in tourism demand. Thus, this study focused on the application of the Box-Jenkins method to the time series of the monthly number of nights stays in tourist establishments on the Sal Island, Cape Verde, over the period from January 2000 to December 2018, to find a model that better describes the series and with good forecast results for the year 2019. Several SARIMA models were studied using the Box-Jenkins method, with the SARIMA(1,1,1)(0,1,1)12 and the SARIMA(2,1,0)(0,1,1)12 demonstrating the best predictive performance in the test phase. However, in forecasting the series for the year 2019 the SARIMA(2,1,0)(0,1,1)12 achieved the best results with a MAPE=8.78%. This model can be used to simulate and analyse the number of overnight stays that be expected on the Island, if the tourism sector were not affected by the pandemic caused by COVID-19.
Description: Universidade Aberta: https://repositorioaberto.uab.pt/handle/10400.2/11979
URI: http://hdl.handle.net/10961/5331
ISBN: 978-981-16-9701-2
Appears in Collections:BDCV - Documentos sobre Cabo Verde

Files in This Item:

There are no files associated with this item.

Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

NOSI Universidade do Minho  

Portal do Conhecimento  - Feedback - portaldoconhecimento@mesci.gov.cv - Tel. +238 - 2610232

Facebook